
 1 www.iExpertAdvisor.com LLC All Right Reserved Copyright © 2017

Event Manager Plug-in

Requires VTS-Connect minimum version 4.0.0.88

The Event Manager Plug-in allows any VTS function to be executed when an event occurs.

Events include when an EA starts, when an EA stops, when a timer expires and on Chart

events.

What is a Plug-in?

VTS stands for Visual Traders Studio.

The VTS Expert Advisor Builder is a Windows graphical application that enables

non-programmers to build complex Expert Advisors by dragging, dropping and connecting

logical elements.

The VTS application contains basic functionality to build almost any Expert Advisor.

A VTS Plug-in allows traders to easily implement advanced trading techniques using an

add-on user interface.

 2 www.iExpertAdvisor.com LLC All Right Reserved Copyright © 2017

 3 www.iExpertAdvisor.com LLC All Right Reserved Copyright © 2017

Contents
Enable the Event Manager Plug-in ... 4

Using the Event Manager Plug-in ... 5

Event Manager on a VTS Drawing .. 9

MQL Event Documentation ...10

 4 www.iExpertAdvisor.com LLC All Right Reserved Copyright © 2017

Enable the Event Manager Plug-in

You must enter your License key to enable the Event Manager Plug-in. Your license key for all of

your VTS products can be found in the Members Area.

License keys are entered in Visual Traders Studio (VTS) from the License entry tab.

 The email address is the email address used to purchase VTS.

 The License Key is the key listed in the Members Area.

 The Update button is used to verify the email address and license key.

 The edit key button is used edit the key value.

 5 www.iExpertAdvisor.com LLC All Right Reserved Copyright © 2017

Using the Event Manager Plug-in

The Event Manager Plug-in allows any VTS function to be executed when an event

occurs. Events include when an EA starts, when an EA stops, when a timer expires and

many Chart events, such as mouse clicks and object creation.

 Event Manager configuration is found on the "Event" tab of all Functions.

 All VTS Elements are configured by clicking the (+) on the bottom of the Element.

 Clicking the (+) opens the Function configuration window. Note the "Event" tab.

 6 www.iExpertAdvisor.com LLC All Right Reserved Copyright © 2017

Clicking the "Event" tab opens the Event Configuration:

The Event configuration window options are:

Event

Description

OnInit When OnInit is checked, the function will execute when the EA is
attached to a chart and whenever the EA's input parameters are
reconfigured.

OnDeInit When OnDeInit is checked, the function will execute when the EA is
removed from a chart.

OnTimer When OnTimer is checked, the function will execute every N
seconds. Note, the seconds value is global and is the same for
functions of the EA.

OnChartEvent When OnChartEvent is checked, the function will execute when
certain Chart Events occur. The Chart Events are listed below.

 7 www.iExpertAdvisor.com LLC All Right Reserved Copyright © 2017

 8 www.iExpertAdvisor.com LLC All Right Reserved Copyright © 2017

Chart Events supported by the VTS EA-Builder

Event

Description

CHARTEVENT_KEYDOWN event of a keystroke, when the chart window is focused;

CHARTEVENT_MOUSE_MOVE mouse move events and mouse click events (if
CHART_EVENT_MOUSE_MOVE=true is set for the
chart);

CHARTEVENT_OBJECT_CREATE event of graphical object creation (if
CHART_EVENT_OBJECT_CREATE=true is set for the
chart);

CHARTEVENT_OBJECT_CHANGE event of change of an object property via the properties
dialog;

CHARTEVENT_OBJECT_DELETE event of graphical object deletion (if
CHART_EVENT_OBJECT_DELETE=true is set for the
chart);

CHARTEVENT_CLICK event of a mouse click on the chart;

CHARTEVENT_OBJECT_CLICK event of a mouse click in a graphical object belonging to
the chart;

CHARTEVENT_OBJECT_DRAG event of a graphical object move using the mouse;

CHARTEVENT_OBJECT_ENDEDIT event of the finished text editing in the entry box of the
Label Edit graphical object;

CHARTEVENT_CHART_CHANGE event of chart changes;

 9 www.iExpertAdvisor.com LLC All Right Reserved Copyright © 2017

Event Manager on a VTS Drawing

Normally a VTS Element must be on a Drawing and connected by a Link to be executed.

 Connection is not mandatory for a Function to execute due to an Event.

 The Function may or may not be connected by a Link in order to execute by an Event.

In the Drawing below, the Functions iAC1 and fnDrawing1 can be configured to execute on Events, as
well as the unconnected Function iADX1.

 10 www.iExpertAdvisor.com LLC All Right Reserved Copyright © 2017

MQL Event Documentation

Much of the VTS EA-Builder is a pass through of the underlying MetaTrader MQL functionality.

The MQL documentation should be referred to for the latest information about features that are offered
via MetaTrader such as Event handling.

The MQL Event Documentation is below. Please refer to the documentation provided by your
MetaTrader platform for the most current information. MQL Help is found via the MetaEditor.

Event Handling Functions

The MQL4 language provides processing of some predefined events. Functions for handling these events must be

defined in a MQL4 program; function name, return type, composition of parameters (if there are any) and their

types must strictly conform to the description of the event handler function.

The event handler of the client terminal identifies functions, handling this or that event, by the type of return value

and type of parameters. If other parameters, not corresponding to below descriptions, are specified for a
corresponding function, or another return type is indicated for it, such a function will not be used as an event

handler.

OnStart

The OnStart() function is the Start event handler, which is automatically generated only for running scripts. It

must be of void type, with no parameters:

void OnStart();

For the OnStart() function, the int return type can be specified.

OnInit

The OnInit() function is the Init event handler. It must be of void or int type, with no parameters:

void OnInit();

The Init event is generated immediately after an Expert Advisor or an indicator is downloaded; The OnInit()

function is used for initialization. If OnInit() has the int type of the return value, the non-zero return code means

unsuccessful initialization, and it generates the Deinit event with the code of deinitialization reason

REASON_INITFAILED.

OnInit() function execution result is analyzed by the terminal's runtime subsystem only if the program has been
compiled using #property strict.

To optimize input parameters of an Expert Advisor, it is recommended to use values of the

ENUM_INIT_RETCODE enumeration as the return code.. During initialization of an Expert Advisor before the

start of testing you can request information about the configuration and resources using the TerminalInfoInteger()

function.

ENUM_INIT_RETCODE

Identifier Description

 11 www.iExpertAdvisor.com LLC All Right Reserved Copyright © 2017

INIT_SUCCEEDED

Successful initialization, testing of the Expert Advisor can be
continued.

This code means the same as a null value – the Expert Advisor has

been successfully initialized in the tester.

INIT_FAILED

Initialization failed; there is no point in continuing testing because
of fatal errors. For example, failed to create an indicator that is

required for the work of the Expert Advisor.

This return value means the same as a value other than zero -

initialization of the Expert Advisor in the tester failed.

INIT_PARAMETERS_INCO
RRECT

This value means the incorrect set of input parameters. The result

string containing this return code is highlighted in red in the general
optimization table.

Testing for the given set of parameters of the Expert Advisor will

not be executed

The OnInit() function of the void type always denotes successful initialization.

OnDeinit

The OnDeinit() function is called during deinitialization and is the Deinit event handler. It must be declared as the

void type and should have one parameter of the const int type, which contains the code of deinitialization reason.

If a different type is declared, the compiler will generate a warning, but the function will not be called.

void OnDeinit(const int reason);

The Deinit event is generated for Expert Advisors and indicators in the following cases:

 before reinitialization due to the change of a symbol or chart period, to which the mql4 program is
attached;

 before reinitialization due to the change of input parameters;

 before unloading the mql4 program.

OnTick

The NewTick event is generated for Expert Advisors only when a new tick for a symbol is received, to the chart of

which the Expert Advisor is attached. It's useless to define the OnTick() function in a custom indicator or script,
because the NewTick event is not generated for them.

The Tick event is generated only for Expert Advisors, but this does not mean that Expert Advisors required the

OnTick() function, since not only NewTick events are generated for Expert Advisors, but also events of Timer,

BookEvent and ChartEvent are generated. It must be declared as the void type, with no parameters:

void OnTick();

OnTimer

The OnTimer() function is called when the Timer event occurs, which is generated by the system timer only for

Expert Advisors and indicators - it can't be used in scripts. The frequency of the event occurrence is set when
subscribing to notifications about this event to be received by the EventSetTimer() function.

You can unsubscribe from receiving timer events for a particular Expert Advisor using the EventKillTimer()

 12 www.iExpertAdvisor.com LLC All Right Reserved Copyright © 2017

function. The function must be defined with the void type, with no parameters:

void OnTimer();

It is recommended to call the EventSetTimer() function once in the OnInit() function, and the EventKillTimer()
function should be called once in OnDeinit().

Every Expert Advisor, as well as every indicator works with its own timer and receives events only from it. As

soon as the mql4 program stops operating, the timer is destroyed forcibly, if it was created but hasn't been disabled

by the EventKillTimer() function.

OnTester

The OnTester() function is the handler of the Tester event that is automatically generated after a history testing of

an Expert Advisor on the chosen interval is over. The function must be defined with the double type, with no

parameters:

double OnTester();

The function is called right before the call of OnDeinit() and has the same type of the return value - double.

OnTester() can be used only in the testing of Expert Advisors. Its main purpose is to calculate a certain value that

is used as the Custom max criterion in the genetic optimization of input parameters.

In the genetic optimization descending sorting is applied to results within one generation. I.e. from the point of

view of the optimization criterion, the best results are those with largest values (for the Custom max optimization

criterion values returned by the OnTester function are taken into account). In such a sorting, the worst values are
positioned at the end and further thrown off and do not participate in the forming of the next generation.

OnChartEvent

OnChartEvent() is the handler of a group of ChartEvent events:

 CHARTEVENT_KEYDOWN — event of a keystroke, when the chart window is focused;

 CHARTEVENT_MOUSE_MOVE — mouse move events and mouse click events (if
CHART_EVENT_MOUSE_MOVE=true is set for the chart);

 CHARTEVENT_OBJECT_CREATE — event of graphical object creation (if
CHART_EVENT_OBJECT_CREATE=true is set for the chart);

 CHARTEVENT_OBJECT_CHANGE — event of change of an object property via the properties dialog;

 CHARTEVENT_OBJECT_DELETE — event of graphical object deletion (if
CHART_EVENT_OBJECT_DELETE=true is set for the chart);

 CHARTEVENT_CLICK — event of a mouse click on the chart;

 CHARTEVENT_OBJECT_CLICK — event of a mouse click in a graphical object belonging to the chart;

 CHARTEVENT_OBJECT_DRAG — event of a graphical object move using the mouse;

 CHARTEVENT_OBJECT_ENDEDIT — event of the finished text editing in the entry box of the

LabelEdit graphical object;

 CHARTEVENT_CHART_CHANGE — event of chart changes;

 CHARTEVENT_CUSTOM+n — ID of the user event, where n is in the range from 0 to 65535.

 CHARTEVENT_CUSTOM_LAST — the last acceptable ID of a custom event
(CHARTEVENT_CUSTOM +65535).

 13 www.iExpertAdvisor.com LLC All Right Reserved Copyright © 2017

The function can be called only in Expert Advisors and indicators. The function should be of void type with 4
parameters:

void OnChartEvent(const int id, // Event ID

const long& lparam, // Parameter of type long event

const double& dparam, // Parameter of type double event

const string& sparam // Parameter of type string events

);

For each type of event, the input parameters of the OnChartEvent() function have definite values that are required

for the processing of this event. The events and values passed through these parameters are listed in the table

below.

Event
Value of the id
parameter

Value of the
lparam parameter

Value of the dparam
parameter

Value of the sparam parameter

Event of a keystroke

CHARTEVEN
T_KEYDOW

N

code of a pressed

key

Repeat count (the number of

times the keystroke is

repeated as a result of the user

holding down the key)

The string value of a bit mask
describing the status of keyboard

buttons

Mouse events (if
property

CHART_EVENT_MOU

SE_MOVE=true is set

for the chart)

CHARTEVEN

T_MOUSE_M

OVE

the X coordinate the Y coordinate

The string value of a bit mask

describing the status of mouse

buttons

Event of graphical object
creation (if

CHART_EVENT_OBJE

CT_CREATE=true is set

for the chart)

CHARTEVEN
T_OBJECT_C

REATE
— —

Name of the created graphical

object

Event of change of an

object property via the

properties dialog

CHARTEVEN

T_OBJECT_C

HANGE

— —
Name of the modified graphical

object

Event of graphical object

deletion (if

CHART_EVENT_OBJE

CT_DELETE=true is set

for the chart)

CHARTEVEN

T_OBJECT_D

ELETE

— —
Name of the deleted graphical

object

Event of a mouse click on
the chart

CHARTEVEN
T_CLICK

the X coordinate the Y coordinate —

Event of a mouse click in

a graphical object

belonging to the chart

CHARTEVEN

T_OBJECT_C

LICK

the X coordinate the Y coordinate
Name of the graphical object, on
which the event occurred

Event of a graphical CHARTEVEN— — Name of the moved graphical

 14 www.iExpertAdvisor.com LLC All Right Reserved Copyright © 2017

object dragging using the

mouse

T_OBJECT_D

RAG

object

Event of the finished text

editing in the entry box of

the LabelEdit graphical

object

CHARTEVEN

T_OBJECT_E
NDEDIT

— —

Name of the LabelEdit graphical

object, in which text editing has
completed

Event of chart Changes

CHARTEVEN
T_CHART_C

HANGE
— — —

ID of the user event
under the N number

CHARTEVEN

T_CUSTOM+

N

Value set by the

EventChartCusto

m() function

Value set by the
EventChartCustom() function

Value set by the
EventChartCustom() function

OnCalculate

The OnCalculate() function is called only in custom indicators when it's necessary to calculate the indicator

values by the Calculate event. This usually happens when a new tick is received for the symbol, for which the

indicator is calculated. This indicator is not required to be attached to any price chart of this symbol.

The OnCalculate() function must have a return type int.

int OnCalculate (const int rates_total, // size of input time series

const int prev_calculated, // bars handled in previous call

const datetime& time[], // Time

const double& open[], // Open

const double& high[], // High

const double& low[], // Low

const double& close[], // Close
const long& tick_volume[], // Tick Volume

const long& volume[], // Real Volume

const int& spread[] // Spread

);

Parameters of open[], high[], low[] and close[] contain arrays with open prices, high and low prices and close

prices of the current time frame. The time[] parameter contains an array with open time values, the spread[]
parameter has an array containing the history of spreads (if any spread is provided for the traded security). The

parameters of volume[] and tick_volume[] contain the history of trade and tick volume, respectively.

To determine the indexing direction of time[], open[], high[], low[], close[], tick_volume[], volume[] and

spread[], call ArrayGetAsSeries(). In order not to depend on default values, you should unconditionally call the

ArraySetAsSeries() function for those arrays, which are expected to work with.

The first rates_total parameter contains the number of bars, available to the indicator for calculation, and
corresponds to the number of bars available in the chart.

We should note the connection between the return value of OnCalculate() and the second input parameter

prev_calculated. During the function call, the prev_calculated parameter contains a value returned by

OnCalculate() during previous call. This allows for economical algorithms for calculating the custom indicator in

order to avoid repeated calculations for those bars that haven't changed since the previous run of this function.

For this, it is usually enough to return the value of the rates_total parameter, which contains the number of bars in

 15 www.iExpertAdvisor.com LLC All Right Reserved Copyright © 2017

the current function call. If since the last call of OnCalculate() price data has changed (a deeper history
downloaded or history blanks filled), the value of the input parameter prev_calculated will be set to zero by the

terminal.

To understand it better, it would be useful to start the indicator, which code is attached below.

Indicator Example:

#property indicator_chart_window

#property indicator_buffers 1

//---- plot Line

#property indicator_label1 "Line"

#property indicator_type1 DRAW_LINE

#property indicator_color1 clrDarkBlue

#property indicator_style1 STYLE_SOLID

#property indicator_width1 1
//--- indicator buffers

double LineBuffer[];

//+--+

//| Custom indicator initialization function |

//+--+

int OnInit()

{

//--- indicator buffers mapping

SetIndexBuffer(0,LineBuffer,INDICATOR_DATA);

//---

return(INIT_SUCCEEDED);
}

//+--+

//| Custom indicator iteration function |

//+--+

int OnCalculate(const int rates_total,

const int prev_calculated,

const datetime& time[],

const double& open[],

const double& high[],

const double& low[],
const double& close[],

const long& tick_volume[],

const long& volume[],

const int& spread[])

{

//--- Get the number of bars available for the current symbol and chart period

int bars=Bars(Symbol(),0);

Print("Bars = ",bars,", rates_total = ",rates_total,", prev_calculated = ",prev_calculated);

Print("time[0] = ",time[0]," time[rates_total-1] = ",time[rates_total-1]);

//--- return value of prev_calculated for next call

return(rates_total);
}

